Codon-dependent tRNA fluctuations monitored with fluorescence polarization.
نویسندگان
چکیده
During protein synthesis dictated by the codon sequence of messenger RNA, the ribosome selects aminoacyl-tRNA (aa-tRNA) with high accuracy, the exact mechanism of which remains elusive. By using a single-molecule fluorescence resonance energy transfer method coupled with fluorescence emission anisotropy, we provide evidence of random thermal motion of tRNAs within the ribosome in nanosecond timescale that we refer to as fluctuations. Our results indicate that cognate aa-tRNA fluctuates less frequently than near-cognate. This is counterintuitive because cognate aa-tRNA is expected to fluctuate more frequently to reach the ribosomal A-site faster than near-cognate. In addition, cognate aa-tRNA occupies the same position in the ribosome as near-cognate. These results argue for a mechanism which guides cognate aa-tRNA more accurately toward the A-site as compared to near-cognate. We suggest that a basis for this mechanism is the induced fit of the 30S subunit upon cognate aa-tRNA binding. Our single-molecule fluorescence resonance energy transfer time traces also point to a mechanistic model for GTP hydrolysis on elongation factor Tu mediated by aa-tRNA.
منابع مشابه
Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome.
The mechanisms by which elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA to the A site of the ribosome and, in particular, how GTP hydrolysis by EF-Tu is triggered on the ribosome, are not understood. We report steady-state and time-resolved fluorescence measurements, performed in the Escherichia coli system, in which the interaction of the complex EF-Tu.GTP.Phe-tRNAPhe with ...
متن کاملThe genetic incorporation of a distance probe into proteins in Escherichia coli.
The unnatural amino acid p-nitrophenylalanine (pNO2-Phe) was genetically introduced into proteins in Escherichia coli in response to the amber nonsense codon with high fidelity and efficiency by means of an evolved tRNA/aminoacyl-tRNA synthetase pair from Methanocuccus jannaschii. It was shown that pNO2-Phe efficiently quenches the intrinsic fluorescence of Trp in a distance-dependent manner in...
متن کاملInfluence of Dielectric Constant on Codon-Anticodon pairing in mRNA and tRNA triplets by Theoretical Studies: Hartree-Fock and Density Functional Theory Calculations.
In this paper we have focused on the dielectric constant effect between various solvents with theoretical modelin the biochemical process. Thereby, AAA, UUU, AAG and UUC triplex sequences have been optimized inwater, methanol, ethanol and DMSO with proposed SCRF Model of theory. The solvation of biomolecules isimportant in molecular biology since numerous processes involve to interacting a prot...
متن کاملThe role of fluctuations in tRNA selection by the ribosome.
The detailed mechanism of how the ribosome decodes protein sequence information with an abnormally high accuracy, after 40 years of study, remains elusive. A critical element in selecting correct transfer RNA (tRNA) transferring correct amino acid is "induced fit" between the ribosome and tRNA. By using single-molecule methods, the induced fit mechanism is shown to position favorably the correc...
متن کاملThe emerging role of rectified thermal fluctuations in initiator aa-tRNA- and start codon selection during translation initiation.
Decades of genetic, biochemical, biophysical, and structural studies suggest that the conformational dynamics of the translation machinery (TM), of which the ribosome is the central component, play a fundamental role in the mechanism and regulation of translation. More recently, single-molecule fluorescence resonance energy transfer (smFRET) studies have provided a unique and powerful approach ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 99 11 شماره
صفحات -
تاریخ انتشار 2010